Typhoid & Paratyphoid Vaccine TECHNOLOGY DETAILS

i. About the Technology/Product/Process:

The innovative technology described in this study focuses on the development of a **bivalent typhoidal Outer Membrane Vesicle (OMV)-based immunogen** to combat enteric fever, a disease caused by *Salmonella Typhi* and *Salmonella Paratyphi* A. Enteric fever remains a significant global health issue, with no existing combination vaccine to protect against both causative agents. This technology addresses this gap by formulating a novel vaccine candidate that shows promise in preclinical testing.

Key features of the technology include:

1. Isolation and Characterization of OMVs:

- Outer Membrane Vesicles (OMVs) were isolated from *Salmonella Typhi* and *Salmonella Paratyphi A*.
- These OMVs were comprehensively characterized to identify associated antigens, such as lipopolysaccharide (LPS) and Vi-polysaccharide.

2. Immunization and Immune Response:

- Adult mice were immunized orally with three doses of the bivalent OMV-based immunogen ($25 \mu g/200 \mu l$).
- The immunization induced robust humoral responses, including significant serum IgG levels against LPS and Vi-polysaccharide.
- It activated specific immune cell populations, such as CD4, CD8, and CD19, in the spleen of immunized mice.
- The vaccine also stimulated Th1 and Th17 cell-mediated immune responses.

3. Protective Efficacy:

- Immunization with the bivalent OMVs provided protection against systemic infection caused by lethal doses of heterologous *Salmonella* strains in adult mice models.
- The protective effect was found to be mediated by a combination of humoral and cell-mediated immune responses.

4. Novel Mechanism of Protection:

• Anti-OMVs antibodies generated through immunization significantly inhibited bacterial motility and their ability to penetrate mucin layers.

Potential Impact

This bivalent OMV-based vaccine represents a promising candidate for preventing enteric fever caused by *Salmonella Typhi* and *Salmonella Paratyphi A*. By inducing comprehensive immune responses and inhibiting bacterial motility and mucosal penetration, it offers a novel and effective mechanism for protection. If successfully translated to clinical use, this technology could fill a critical gap in enteric fever prevention, particularly in endemic regions.

ii. Need and utility of the Technology from Public health perspective:

1. Addressing the Burden of Enteric Fever

- *Enteric fever*, caused by *Salmonella Typhi* and *Salmonella Paratyphi A*, is a significant public health concern in low- and middle-income countries, particularly in regions with inadequate sanitation and hygiene.
- It leads to substantial morbidity and mortality, with millions of cases reported annually worldwide.
- The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) *Salmonella* strains has made treatment increasingly difficult, highlighting the urgent need for effective preventive measures.

2. Current Gaps in Vaccine Coverage

- Existing vaccines, such as the Vi polysaccharide vaccine and Typhoid Conjugate Vaccines (TCVs), primarily target *Salmonella Typhi* and do not offer protection against *Salmonella Paratyphi A*.
- There is no licensed combination vaccine capable of addressing both pathogens simultaneously, leaving populations vulnerable to *Salmonella Paratyphi A*.

3. Novel Bivalent Vaccine as a Solution

- The **bivalent OMV-based immunogen** offers protection against both *Salmonella Typhi* and *Salmonella Paratyphi A*, bridging the gap in current vaccine coverage.
- By inducing robust humoral and cell-mediated immunity, it promises comprehensive and long-lasting protection.

4. Public Health Benefits

- **Disease Reduction**: Widespread use of this vaccine can significantly reduce the incidence of enteric fever, alleviating the disease burden on affected communities.
- Antimicrobial Resistance Mitigation: Preventing infections will reduce reliance on antibiotics, slowing the spread of MDR and XDR *Salmonella* strains.
- **Economic Benefits**: Lower disease incidence will reduce healthcare costs associated with treatment, hospitalizations, and lost productivity.
- **Global Health Equity**: By addressing an unmet need, especially in underprivileged regions, this technology can contribute to achieving health equity goals.

5. Potential Applications in Public Health

- Inclusion in national immunization programs in endemic regions.
- Deployment in outbreak settings to contain the spread of both *Salmonella Typhi* and *Salmonella Paratyphi A*.
- Use in travelers' vaccines to protect populations visiting endemic areas.

Conclusion

The bivalent OMV-based vaccine technology is a transformative innovation that addresses critical gaps in enteric fever prevention. Its adoption has the potential to save lives, curb antimicrobial resistance, and strengthen global public health systems.

iii. Technology Readiness level (TRL)

TRL - 4/5

iv. Validation Status and outcome:

In-house validation was completed by ICMR -NIRBI. Third party validation is pending and to be done under this EoI (Phase I).

v. IP Filing Status/Publications

Patent application filed on 25-04-2023 (Application no. 201711011707).

International Application Number: :PCT/IN2018/050158

International Publication Date 04 October 2018 (04.10.2018)

International Publication Number WO 2018/179003 A2
